How many samples are needed to build a classifier: a general sequential approach

نویسندگان

  • Wenjiang J. Fu
  • Edward R. Dougherty
  • Bani K. Mallick
  • Raymond J. Carroll
چکیده

MOTIVATION The standard paradigm for a classifier design is to obtain a sample of feature-label pairs and then to apply a classification rule to derive a classifier from the sample data. Typically in laboratory situations the sample size is limited by cost, time or availability of sample material. Thus, an investigator may wish to consider a sequential approach in which there is a sufficient number of patients to train a classifier in order to make a sound decision for diagnosis while at the same time keeping the number of patients as small as possible to make the studies affordable. RESULTS A sequential classification procedure is studied via the martingale central limit theorem. It updates the classification rule at each step and provides stopping criteria to ensure with a certain confidence that at stopping a future subject will have misclassification probability smaller than a predetermined threshold. Simulation studies and applications to microarray data analysis are provided. The procedure possesses several attractive properties: (1) it updates the classification rule sequentially and thus does not rely on distributions of primary measurements from other studies; (2) it assesses the stopping criteria at each sequential step and thus can substantially reduce cost via early stopping; and (3) it is not restricted to any particular classification rule and therefore applies to any parametric or non-parametric method, including feature selection or extraction. AVAILABILITY R-code for the sequential stopping rule is available at http://stat.tamu.edu/~wfu/microarray/sequential/R-code.html

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Applying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market

Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

WHY AND HOW TO APPLY QUANTUM LEARNING AS A NEW APPROACH TO IMPLEMENTATION THE CURRICULUM

The present study was philosophical and analytical research that examines quantum learning as an effective approach to the curriculum in a qualitative way. It explored books, published essays, and related studies, and took some advantages of online materials on the issue from domestic and foreign sources. Because of large body of data on the issue, only the relevant information was included. Da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2005